博客
关于我
Spark安装部署
阅读量:179 次
发布时间:2019-02-28

本文共 2801 字,大约阅读时间需要 9 分钟。

一 下载Scala和Spark
[root@master opt]# wget http://downloads.lightbend.com/scala/2.11.8/scala-2.11.8.tgz[root@master opt]# wget http://d3kbcqa49mib13.cloudfront.net/spark-2.0.0-bin-hadoop2.7.tgz
二 安装Scala
1 解压
[root@master opt]# tar -zxvf scala-2.11.8.tgz
2 配置环境变量
export SCALA_HOME=/opt/scala-2.11.8export PATH=$PATH:$SCALA_HOME/bin
3 测试
[root@master opt]# scalaWelcome to Scala 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152).Type in expressions for evaluation. Or try :help.scala>
三 安装Spark
1 解压
[root@master opt]# tar -zxvf spark-2.0.0-bin-hadoop2.7.tgz
2 配置环境变量
export SPARK_HOME=/opt/spark-2.0.0-bin-hadoop2.7export PATH=$PATH:$SPARK_HOME/bin
3 配置spark-env.sh
export JAVA_HOME=/opt/jdk1.8export PATH=$PATH:$JAVA_HOME/binexport SCALA_HOME=/opt/scala-2.11.8export PATH=$PATH:$SCALA_HOME/binexport SPARK_HOME=/opt/spark-2.0.0-bin-hadoop2.7export PATH=$PATH:$SPARK_HOME/bin
四 启动
[root@master sbin]# ./start-all.shstarting org.apache.spark.deploy.master.Master, logging to /opt/spark-2.0.0-bin-hadoop2.7/logs/spark-root-org.apache.spark.deploy.master.Master-1-master.outlocalhost: \Slocalhost: Kernel \r on an \mlocalhost: starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark-2.0.0-bin-hadoop2.7/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-master.out[root@master sbin]# jps4128 Jps4049 Worker3992 Master
五 测试
[root@master ~]# cat test.loghello gojavac mysql[root@master sbin]# spark-shellUsing Spark's default log4j profile: org/apache/spark/log4j-defaults.propertiesSetting default log level to "WARN".To adjust logging level use sc.setLogLevel(newLevel).18/02/03 22:25:05 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable18/02/03 22:25:08 WARN SparkContext: Use an existing SparkContext, some configuration may not take effect.Spark context Web UI available at http://192.168.0.110:4040Spark context available as 'sc' (master = local[*], app id = local-1517667907847).Spark session available as 'spark'.Welcome to      ____              __     / __/__  ___ _____/ /__    _\ \/ _ \/ _ `/ __/  '_/   /___/ .__/\_,_/_/ /_/\_\   version 2.0.0      /_/         Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152)Type in expressions to have them evaluated.Type :help for more information.scala> var file = sc.textFile("/root/test.log");file: org.apache.spark.rdd.RDD[String] = /root/test.log MapPartitionsRDD[1] at textFile at 
:24scala> file.collectres1: Array[String] = Array(hello go, java, c mysql, "", "")scala> var file = sc.textFile("hdfs://master/test.log");file: org.apache.spark.rdd.RDD[String] = hdfs://master/test.log MapPartitionsRDD[3] at textFile at
:24scala> file.collectres2: Array[String] = Array(hello go, java, c mysql, "", "")
你可能感兴趣的文章
mysql server has gone away
查看>>
mysql slave 停了_slave 停止。求解决方法
查看>>
MySQL SQL 优化指南:主键、ORDER BY、GROUP BY 和 UPDATE 优化详解
查看>>
MYSQL sql语句针对数据记录时间范围查询的效率对比
查看>>
mysql sum 没返回,如果没有找到任何值,我如何在MySQL中获得SUM函数以返回'0'?
查看>>
mysql Timestamp时间隔了8小时
查看>>
Mysql tinyint(1)与tinyint(4)的区别
查看>>
mysql union orderby 无效
查看>>
mysql v$session_Oracle 进程查看v$session
查看>>
mysql where中如何判断不为空
查看>>
MySQL Workbench 使用手册:从入门到精通
查看>>
mysql workbench6.3.5_MySQL Workbench
查看>>
MySQL Workbench安装教程以及菜单汉化
查看>>
MySQL Xtrabackup 安装、备份、恢复
查看>>
mysql [Err] 1436 - Thread stack overrun: 129464 bytes used of a 286720 byte stack, and 160000 bytes
查看>>
MySQL _ MySQL常用操作
查看>>
MySQL – 导出数据成csv
查看>>
MySQL —— 在CentOS9下安装MySQL
查看>>
MySQL —— 视图
查看>>
mysql 不区分大小写
查看>>