博客
关于我
Spark安装部署
阅读量:179 次
发布时间:2019-02-28

本文共 2358 字,大约阅读时间需要 7 分钟。

安装Scala和Spark的详细指南

一、下载Scala和Spark

在开始安装之前,我们需要下载Scala和Spark的安装包。通过终端访问服务器,可以使用Wget命令下载相应的软件包。

# 下载Scala
wget http://downloads.lightbend.com/scala/2.11.8/scala-2.11.8.tgz
# 下载Spark
wget http://d3kbcqa49mib13.cloudfront.net/spark-2.0.0-bin-hadoop2.7.tgz

二、安装Scala

安装Scala后,我们需要将其添加到系统的环境变量中,这样才能在终端中使用Scala命令。

  • 解压Scala安装包

    使用tar命令解压刚下载的Scala安装包。

    tar -zxvf scala-2.11.8.tgz
  • 配置环境变量

    在终端中设置Scala的环境变量,确保PATH包含Scala的安装目录。

    export SCALA_HOME=/opt/scala-2.11.8
    export PATH=$PATH:$SCALA_HOME/bin
  • 验证Scala安装

    在终端中运行Scala命令,验证是否正确安装。

    scala

    输出示例:

    Welcome to Scala 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152).
    Type in expressions for evaluation. Or try :help.
    scala>
  • 三、安装Spark

    安装Spark后,我们需要配置环境变量并验证其正确运行。

  • 解压Spark安装包

    使用tar命令解压刚下载的Spark安装包。

    tar -zxvf spark-2.0.0-bin-hadoop2.7.tgz
  • 配置环境变量

    在终端中设置Spark的环境变量,确保PATH包含Spark的安装目录。

    export SPARK_HOME=/opt/spark-2.0.0-bin-hadoop2.7
    export PATH=$PATH:$SPARK_HOME/bin
  • 配置Spark-env.sh脚本

    根据Spark文档,编辑spark-env.sh文件,设置必要的环境变量。

    export JAVA_HOME=/opt/jdk1.8
    export PATH=$PATH:$JAVA_HOME/bin
    export SCALA_HOME=/opt/scala-2.11.8
    export PATH=$PATH:$SCALA_HOME/bin
    export SPARK_HOME=/opt/spark-2.0.0-bin-hadoop2.7
    export PATH=$PATH:$SPARK_HOME/bin
  • 四、启动Spark集群

    完成Spark的安装后,我们需要启动集群并验证其运行状态。

  • 启动集群

    使用start-all.sh脚本启动Master节点和Worker节点。

    ./start-all.sh

    输出示例:

    starting org.apache.spark.deploy.master.Master, logging to /opt/spark-2.0.0-bin-hadoop2.7/logs/spark-root-org.apache.spark.deploy.master.Master-1-master.out
    localhost:
    \Slocalhost: Kernel \r on an \mlocalhost: starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark-2.0.0-bin-hadoop2.7/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-master.out
  • 验证节点状态

    使用jps命令查看当前运行的Java进程,确认Master和Worker节点已启动。

    jps

    输出示例:

    4128 Jps
    4049 Worker
    3992 Master
  • 五、测试Spark环境

    验证Spark环境是否正确配置并运行,确保集群能够正常工作。

  • 运行Spark Shell

    使用spark-shell命令启动Spark Shell,验证集群的连接状态。

    spark-shell

    输出示例:

    Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
    Setting default log level to "WARN".
    To adjust logging level use sc.setLogLevel(newLevel).
  • 读取文件并处理

    通过Spark Shell读取本地文件并进行基本处理,验证Spark集群的功能。

    cat test.log
    hello go
    java
    c mysql
    ""
    ""

    或者读取HDFS文件:

    var file = sc.textFile("hdfs://master/test.log")
    file: org.apache.spark.rdd.RDD[String] = hdfs://master/test.log MapPartitionsRDD[3] at textFile at

    集群状态可以通过Web UI查看,访问地址为 http://master:4040

  • 通过以上步骤,您可以成功安装并配置Scala和Spark环境,并验证其运行状态。

    转载地址:http://ssej.baihongyu.com/

    你可能感兴趣的文章
    Node.js安装和入门 - 2行代码让你能够启动一个Server
    查看>>
    node.js安装方法
    查看>>
    Node.js官网无法正常访问时安装NodeJS的方法
    查看>>
    Node.js的循环与异步问题
    查看>>
    Node.js高级编程:用Javascript构建可伸缩应用(1)1.1 介绍和安装-安装Node
    查看>>
    nodejs + socket.io 同时使用http 和 https
    查看>>
    NodeJS @kubernetes/client-node连接到kubernetes集群的方法
    查看>>
    Nodejs express 获取url参数,post参数的三种方式
    查看>>
    nodejs http小爬虫
    查看>>
    nodejs libararies
    查看>>
    nodejs npm常用命令
    查看>>
    nodejs npm常用命令
    查看>>
    Nodejs process.nextTick() 使用详解
    查看>>
    nodejs 创建HTTP服务器详解
    查看>>
    nodejs 发起 GET 请求示例和 POST 请求示例
    查看>>
    NodeJS 导入导出模块的方法( 代码演示 )
    查看>>
    nodejs 开发websocket 笔记
    查看>>
    nodejs 的 Buffer 详解
    查看>>
    nodejs 读取xlsx文件内容
    查看>>
    nodejs 运行CMD命令
    查看>>